Discovery of the Σ_b Baryons at CDF Jennifer Pursley The Johns Hopkins University Fermilab Users' Meeting, June 6-7, 2007 Featured Student Talk ## <u>Outline</u> - Motivation: why study heavy baryons? - Heavy baryon spectroscopy - \blacksquare Σ_b theoretical predictions - \blacksquare Σ_b search methodology - $\blacksquare \Sigma_{b}$ reconstruction - $\blacksquare \Sigma_b$ results - Why study baryons with heavy quarks? - □ High energy data gives precise tests of perturbative Quantum Chromodynamics (QCD) - □ Few tests at low energies (non-perturbative) - Non-perturbative QCD effects could obscure or confuse new physics signatures! - Quark interactions inside hadrons described by nonperturbative QCD... - Heavy baryons: best way to study nonperturbative QCD - □ Find as many states as possible - □ Measure properties (mass, width, lifetime...) - □ Compare to a number of theoretical models - Finding new particles also good "practice" for LHC! ## Heavy Baryon Spectroscopy - Heavy quark effective theory (HQET) - □ Baryons with one heavy and two light quarks: - Treat heavy quark as static source of color field - Light quarks form a diquark pair - Infinite heavy quark mass → angular momentum and flavor of diquark are good quantum numbers - HQET extensively tested for *Qq* systems, interesting to test for *Qqq* - Heavy baryon predictions from many different models: - \square HQET, potential models, $1/N_c$ expansion, sum rules, lattice QCD ## Σ_b Theoretical Predictions - \bullet Λ_b (*udb*) lowest mass *b* baryon - □ Only established *b* baryon - ☐ Flavor antisymmetric diquark state - Decays weakly - Enough statistics at Tevatron to probe other b baryons - Σ_b next accessible baryons: - □ Flavor symmetric diquark state - Decays strongly $$= 3/2 + (\Sigma_b^*)$$ $$\Sigma_{b}$$: { qq } b , $q = u$, d ; $J^{p} = S_{Q} + S_{qq}$ $$= 1/2^{+} (\Sigma_{b})$$ - $\Sigma_{\rm b}^{(*)0}$ decay to $\Lambda_{\rm b}\pi^0$ - □ CDF detector can't reconstruct π^0 , won't see $\Sigma_b^{(*)0}$ - $\Sigma_b^{(*)\pm}$ decay to $\Lambda_b \pi^{\pm}$ - We expect to see: $$\Sigma_b^+$$, Σ_b^- , Σ_b^{*+} , Σ_b^{*-} $$\Sigma_{b}^{(*)0} = udb$$ $$\Sigma_{b}^{(*)+} = uub$$ $$\Sigma_{b}^{(*)-} = ddb$$ ## Σ_b Theoretical Predictions - From heavy baryon models, we expect: - $\square \Sigma_b^*$ heavier than Σ_b (hyperfine splitting) - $\square \Sigma_{b}^{-}$ heavier than Σ_{b}^{+} (strong isospin splitting) - $\square \Sigma_b^{(*)}$ intrinsic width determined by phase space of one pion P-wave transition - Summary of predictions: | Σ_b property | Expected values (MeV/c^2) | | | | | |---|-----------------------------|--|--|--|--| | $\mathrm{m}(\Sigma_b)$ - $\mathrm{m}(\Lambda_b^0)$ | 180 - 210 | | | | | | $\operatorname{m}(\Sigma_b^*)$ - $\operatorname{m}(\Sigma_b)$ | 10 - 40 | | | | | | $\operatorname{m}(\Sigma_b^-)$ - $\operatorname{m}(\Sigma_b^+)$ | 5 - 7 | | | | | | $\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$ | $\sim 8, \sim 15$ | | | | | ## Σ_b Search Methodology - Σ_b decays strongly at primary vertex \rightarrow combine Λ_b candidate with good-quality prompt track to make Σ_b candidate - Separate Σ_{b}^{-} and Σ_{b}^{+} : $$\square \quad \Sigma_b^{(*)-} \to \Lambda_b^0 \pi^- \to \Lambda_c^+ \pi^- \pi^- \ (+ \text{ c.c.})$$ $$\square \quad \Sigma_b^{(*)+} \to \Lambda_b^0 \pi^+ \to \Lambda_c^+ \pi^- \pi^+ \text{ (+ c.c.)}$$ Search for resonances in the mass difference: $$Q = m(\Lambda_b \pi) - m(\Lambda_b) - m_{\pi}$$ - Unbiased Σ_b selection - □ Optimize Σ_b cuts without looking in Σ_b signal region of: $$30 < Q < 100 \text{ MeV/c}^2$$ - In 1.1 fb⁻¹ of data, CDF has world's largest sample of Λ_h : ~3000 - Use CDF's two displaced track trigger to reconstruct Proton from Λ_c and π from Λ_b usually satisfy two displaced track criteria ## Σ_b Backgrounds - Σ_b backgrounds: - □ Hadronization tracks around prompt Λ_b baryons − Dominant! - □ Hadronization tracks around B mesons reconstructed as Λ_b - Combinatorial background - Determine background contributions from data and PYTHIA Monte Carlo - Good agreement between Σ_b data and the expected background ## Σ_b Signal Region Excess observed in signal region: | Sample | Data events | Bkg events | |--------------------|-------------|------------| | $\Lambda_b^0\pi^-$ | 406 | 288 | | $\Lambda_b^0\pi^+$ | 404 | 313 | lacktriangle Perform Σ_b signal fit to data ## Σ_b Observation - Model signal with unbinned likelihood fit - □ Background fixed - Peaks modeled by a Breit-Wigner convoluted with the detector resolution - □ Common parameter: $m(\Sigma_b^*) - m(\Sigma_b)$ - Observe signals consistent with lowest lying charged $\Sigma_b^{(*)}$ states - No signal hypothesis excluded at high confidence level (> 5 σ) ## Σ_b Measurement Results $$m(\Sigma_b^+)$$ - $m(\Lambda_b^0)$ - $m_{\pi} = 48.5^{+2.0}_{-2.2}$ (stat.) $^{+0.2}_{-0.3}$ (syst.) MeV/c² $$m(\Sigma_b^-)$$ - $m(\Lambda_b^0)$ - $m_{\pi} = 55.9 \pm 1.0$ (stat.) ± 0.2 (syst.) MeV/c² $$m(\Sigma_b^{*-}) - m(\Sigma_b^{-}) = m(\Sigma_b^{*+}) - m(\Sigma_b^{+}) = 21.2^{+2.0}_{-1.9} \text{ (stat.) } ^{+0.4}_{-0.3} \text{ (syst.) } \text{MeV/c}^2$$ $$N(\Sigma_b^+) = 32_{-12}^{+13} \text{ (stat.) } ^{+5}_{-3} \text{ (syst.)}$$ $$N(\Sigma_b^-) = 59^{+15}_{-14} \text{ (stat.) } ^{+9}_{-4} \text{ (syst.)}$$ $$N(\Sigma_b^{*+}) = 77_{-16}^{+17} \text{ (stat.) } ^{+10}_{-6} \text{ (syst.)}$$ $$N(\Sigma_b^{*-}) = 69_{-17}^{+18} \text{ (stat.) } ^{+16}_{-5} \text{ (syst.)}$$ - Good agreement with theoretical predictions - Theoretical models do well in nonperturbative QCD regime #### Summary - First observation of resonant $\Lambda_h \pi^{\pm}$ states - \Box Consistent with lowest lying charged Σ_{b} states - □ With $m(\Lambda_b) = 5619.7 \pm 1.2$ (stat.) ± 1.2 (syst.) MeV/c², $$m(\Sigma_b^+) = 5807.8^{+2.0}_{-2.2} \text{ (stat.)} \pm 1.7 \text{ (syst.)} \text{ MeV/c}^2$$ $m(\Sigma_b^-) = 5815.2 \pm 1.0 \text{ (stat.)} \pm 1.7 \text{ (syst.)} \text{ MeV/c}^2$ $m(\Sigma_b^{*+}) = 5829.0^{+1.6}_{-1.8} \text{ (stat.)} ^{+1.7}_{-1.8} \text{ (syst.)} \text{ MeV/c}^2$ $m(\Sigma_b^{*-}) = 5836.4 \pm 2.0 \text{ (stat.)} ^{+1.8}_{-1.7} \text{ (syst.)} \text{ MeV/c}^2$ - Continuing research: - \square Improve Σ_{b} measurement measure width, polarization... - Search for more heavy baryons! - □ Continue testing theoretical models # Σ_b Observation! ## Backup Slides ## Baryon multiplets: ## Σ_b Backgrounds - Σ_b backgrounds: - □ Hadronization tracks around prompt Λ_b − Dominant! - □ B meson hadronization tracks - Combinatorial background - Take background shapes from data or PYTHIA Monte Carlo, normalize using Λ_b sample comp. - Backgrounds are fixed before looking in the Σ_h signal region | Background type | | Sample | Contribution | | |------------------------|--|--|-------------------|--| | Λ_b HA+UE | | PYTHIA | dominant | | | Combinatorial | | Upper Λ_b sideband $m(\Lambda_b) \in [5.8, 7.0]$ | small | | | B mesons | | data | small | | | B meson
reflections | $\pi_{\scriptscriptstyle \Sigma}$ from B HA+UE | Pythia | Dominant within B | | | | π_{Σ} from B decay (D*, D**) | Inclusive BGen | negligible | | | | π_{Σ} from B** | B0 Pythia | negligible | | ## Strength of Σ_b hypothesis Evaluate Likelihood Ratio: $$LR = L_{\text{no peak fit}}$$ $$L_{\text{four peak fit}}$$ - Systematic variations included as nuisance parameters - Simplistic MC studies show the no signal hypothesis excluded at > 5 σ level | Hypothesis | $\Delta(-\ln L)$ | <i>p</i> -values | |-------------------------|------------------|--------------------------------------| | No Signal | 42.4 | < 8.3 x 10 ⁻⁸ (> 5.2 σ) | | $2 \Sigma_b$ States | 15.3 | 9.2 x 10 ⁻⁵ (3.7 σ) | | No Σ_b^- Peak | 11.7 | 3.2×10^{-4} (3.4 σ) | | No Σ_b^+ Peak | 3.9 | 9.0 x 10 ⁻³ (2.4 σ) | | No Σ_b^{*-} Peak | 10.8 | 6.4 x 10 ⁻⁴ (3.2 σ) | | No Σ_b^{*+} Peak | 11.3 | 6.0 x 10 ⁻⁴ (3.2 σ) | #### Zero and Two Peak Fits - Two sources of systematics: - Mass scale - Assumptions made in the fit to data - For mass scale: take difference between CDF and PDG values for - \square D*, Σ_c^{0} , Σ_c^{++} , and Λ_c^{*} - \square Model with a linear function to extrapolate for Σ_b Q values - □ This is the largest syst error on the mass diff measurement! | Particle | $Q (\text{MeV/c}^2)$ | Mass Syst. (MeV/c ²) | |-------------------------|-----------------------|----------------------------------| | Σ_b^+ | 48.2 | 0.19 | | Σ_b^- | 55.9 | 0.22 | | Σ_b^{*+} | 69.7 | 0.28 | | Σ_{b}^{*-} | 77.4 | 0.32 | | $\Sigma_b^* - \Sigma_b$ | $\Delta Q = 21.2$ | 0.10 | ### Fit Systematics - Background model - \Box Limited knowledge of Λ_b had. shape (reweighting Pythia) largest error on the yield measurements - \square Sample composition from Λ_b mass fit - Signal model - Detector resolution underestimated in Monte Carlo - Natural width estimation has some uncertainty - \square Constraint that $m(\Sigma_b^{*-}) m(\Sigma_b^{--}) = m(\Sigma_b^{*+}) m(\Sigma_b^{+-})$ - To evaluate: - □ Generate Toy MC samples with one systematic variation - ☐ Fit samples with variation and default fit - □ Take the average shift in parameter value as syst. error - All systematics much smaller than statistical error! #### Σ_{b} Systematics | Parameter | Mass
scale | $egin{array}{c} egin{array}{c} A_b \ Sample \ Comp_{_i} \end{array}$ | Λ _b Ha+UE
Norm. | Λ _b Ha+UE
Shape | Λ _b Ha+UE
Reweight | Det.
Reso. | Σ _b Nat.
Width | ${\Sigma_b}^*$ - ${\Sigma_b}$
Isospin
Diff. | Total | |-----------------------------|---------------|--|-------------------------------|-------------------------------|----------------------------------|---------------|------------------------------|---|-------| | $\Sigma_b^- Q$ | 0.22 | 0.00 | 0.009 | 0.000 | 0.04 | 0.0 | 0.009 | 0.06 | 0.23 | | (MeV/c²) | -0.22 | -0.03 | -0.002 | -0.011 | -0.0004 | -0.011 | -0.005 | 0.0 | -0.22 | | $\Sigma_b^+ Q$ | 0.19 | 0.03 | 0.013 | 0.013 | 0.0 | 0.0 | 0.01 | 0.0 | 0.19 | | (MeV/c^2) | -0.19 | 0.0 | -0.013 | 0.0 | -0.11 | -0.014 | -0.02 | -0.11 | -0.25 | | Σ_b^* - Σ_b Q | 0.10 | 0.05 | 0.14 | 0.04 | 0.32 | 0.02 | 0.07 | 0.0 | 0.38 | | (MeV/c²) | -0.10 | 0.0 | -0.13 | 0.0 | 0.0 | 0.0 | -0.07 | -0.26 | -0.32 | | Σ_b^- events | 0.0 | 0.7 | 2.2 | 0.3 | 7.4 | 0.3 | 3.4 | 0.0 | 8.5 | | | 0.0 | 0.0 | -2.2 | 0.0 | 0.0 | 0.0 | -3.4 | -0.08 | -4.1 | | Σ_b^+ events | 0.0 | 3.3 | 2.1 | 1.2 | 2.3 | 0.3 | 1.8 | 0.0 | 5.0 | | | 0.0 | 0.0 | -2.1 | 0.0 | -1.8 | 0.0 | -2.0 | -0.004 | -3.4 | | ${\Sigma_b}^{*-}$ events | 0.0 | 0.4 | 4.8 | 0.3 | 14.7 | 0.1 | 1.7 | 0.0 | 15.6 | | | 0.0 | 0.0 | -4.7 | 0.0 | 0.0 | 0.0 | -1.7 | -0.16 | -5.0 | | ${\Sigma_b}^{*+}$ events | 0.0 | 7.3 | 4.8 | 2.8 | 4.6 | 0.2 | 0.8 | 0.16 | 10.3 | | | 0.0 | 0.0 | -4.8 | 0.0 | -2.9 | 0.0 | -0.8 | 0.0 | -5.7 | - Mass scale systematic dominates - All systematics much smaller than statistical error!